
1

Efficient and Privacy-Preserving Spatial
Keyword Similarity Query over Encrypted Data

Songnian Zhang, Suprio Ray, Member, IEEE, Rongxing Lu, Fellow, IEEE, Yunguo Guan, Yandong Zheng,
and Jun Shao, Senior Member, IEEE

Abstract—As a popular and practical query type in location-based services, the spatial keyword query has been extensively studied in
both academia and industry. Meanwhile, with the growing demand for data privacy, many privacy-preserving spatial keyword query
schemes have been proposed to deal with queries over encrypted data. However, none of the existing schemes preserve access
pattern privacy, and the recent research illustrates that leaking such privacy may incur inference attacks and thus disclose sensitive
information. In addition, most existing schemes only consider the boolean keyword search, which is not quite practical and flexible in
real-world applications. To address the above issues, in this paper, we propose two privacy-preserving spatial keyword similarity query
schemes that can preserve full and partial access pattern privacy, respectively. First, we present a basic privacy-preserving spatial
keyword similarity query scheme (PPSKS) by integrating a secure set membership test (SSMT) technique with secure circuits. After
that, to improve performance, we propose a tree-based scheme (PPSKS+) by employing a new index called FR-tree together with a
predicate encryption technique that can encrypt FR-tree. Formal security analysis shows that: i) our proposed schemes can protect
outsourced data, query requests, and query results; ii) our PPSKS scheme can hide full access patterns, while the PPSKS+ scheme
preserves m-access pattern privacy. Extensive experiments are also conducted, and the results indicate that our tree-based PPSKS+
scheme is much more efficient, almost two orders of magnitude better than our linear search PPSKS scheme in performing queries.

Index Terms—Spatial keyword similiarity query, Privacy preservation, Secure circuits, Bloom filter, Lagrange interpolation.

F

1 INTRODUCTION

THE proliferation of the mobile Internet drives the
widespread use of location-based services (LBS), es-

pecially the spatial keyword query services offered by a
slew of commercial applications, e.g., Yelp and Google Map.
Due to its broad utility in LBS, the spatial keyword query
has been extensively investigated in both academia and
industry [1]–[5]. One of the real-life examples is the POI
(point of interest) recommendation system, in which a user
can enjoy the services by requesting with a spatial query
range and keywords to a service provider. Assume that
the service provider is equipped with a spatial keyword
database containing POI locations and feature keywords,
e.g., a restaurant with location (39.95, -82.99) and a set of
keywords {coffee, beef,pizza}. By performing the spatial
keyword query, the service provider can retrieve the POIs
satisfying the following two conditions: i) the POIs’ loca-
tions fall inside the spatial query range; and ii) the POIs’
keywords match the query keywords.

Meanwhile, with increasing concerns about data privacy,
performing queries over encrypted data has attracted con-
siderable attention. As a quite practical query type, process-
ing spatial keyword queries over encrypted data is naturally

• S. Zhang, S. Ray, R. Lu, and Y. Guan are with the Faculty of Computer
Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
(e-mail: szhang17@unb.ca, sray@unb.ca, rlu1@unb.ca, yguan4@unb.ca).

• Y. Zheng is with the State Key Laboratory of Integrated Services
Networks, Xidian University, Xi’an, 710071, China (e-mail: zhengyan-
dong@xidian.edu.cn).

• J. Shao is with School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou, 310018, China (e-mail:
chn.junshao@gmail.com).

an important research topic, and several privacy-preserving
spatial keyword query schemes have been proposed [6]–
[10]. However, existing schemes have two issues: i) most
of them [6]–[9] only consider the boolean keyword match,
i.e., a data record’s keywords must exactly contain all query
keywords, which is not practical and flexible enough in
real-world applications. Although the work [10] studied the
keyword similarity, it adopted the Euclidean distance as the
metric, which is more suitable for the vector space character-
ized by the fixed vector length instead of the scenario with
dynamic keyword set sizes [11]; and ii) none of the existing
schemes protect access pattern privacy [12], i.e., the informa-
tion about which data records satisfy the query conditions.
As reported in [13], [14], leaking access patterns may incur
inference attacks and thus disclose sensitive information.

Aiming at the above two issues, we focus on privacy-
preserving spatial keyword similarity query schemes by
considering keyword similarity and protecting the access
pattern privacy. Notably, since the Jaccard similarity is
very popular in measuring the keyword set similarity [15],
[16], and this work exact considers such a scenario, it is
adopted in this paper. However, the privacy-preserving
spatial keyword similarity query scheme is more challeng-
ing to develop than the privacy-preserving boolean spatial
keyword query scheme. This is because the latter only
involves the equality test for keywords, while the former
contains a typical compute-then-compare operation in dealing
with keywords, which is recognized as challenging when
securing this operation in a single-server model [9], [17].
Furthermore, in addition to the data and query privacy, our
proposed schemes have a stricter security goal, i.e., preserv-
ing the privacy of access patterns, which makes it even more

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

2

difficult to design the privacy-preserving spatial keyword
similarity query schemes. Besides these, protecting access
patterns will inevitably introduce the performance issue.
Therefore, devising an efficient scheme while preserving the
privacy of access patterns is a challenging problem that we
have to tackle.

In this paper, we first propose a privacy-preserving
spatial keyword similarity query scheme, named as PPSKS,
to securely determine range constraint, compute keyword
similarity, and hide access patterns. The main idea is to map
the spatial data into bloom filters and then encrypt them
with fully homomorphic encryption (FHE). Then, the opera-
tor can obtain an encrypted flag to determine whether a data
record satisfies the spatial query range. However, a problem
arises, i.e., “how do we compute encrypted flags from the
encrypted bloom filters?”. To tackle it, we design a La-
grange interpolation-based approach and propose a secure
set membership test (SSMT) scheme to make it possible.
For the keyword similarity, we surprisingly found that we
can transform the encrypted flags (obtained by our SSMT
scheme) into an encrypted bit sequence, which can represent
the number of intersecting elements of two keyword sets,
by designing a secure partial addition circuit. Based on
this observation, we can then use the secure addition and
secure comparison circuits to obtain an encrypted flag that
can determine whether these two keyword sets are similar.
With these encrypted flags, we can compute (not select) the
encrypted query results and thus hide access patterns.

To improve performance, we further propose a tree-
based privacy-preserving spatial keyword similarity query
scheme, PPSKS+, in which we introduce an index called FR-
tree and modify a predicate encryption technique [18] allow-
ing the operator to search over the encrypted FR-tree. Note
that the modified predicate encryption technique can protect
the conjunctive privacy discussed in [9], which refers to
the information about the spatial constraint or the keyword
constraint mismatches when a data record is not picked.
Specifically, our paper has the following contributions:
• First, we propose a novel secure set membership test

(SSMT) scheme that can securely determine whether an
element belongs to a set or not. In our SSMT scheme, we
combine the bloom filter technique and Lagrange interpo-
lation function such that it can protect the privacy of the
element, the set, and the decision result. Note that our SSMT
scheme can also be applied to other privacy-preserving
schemes that seek the fully secure set membership test in
a single-server model.
• Second, we propose a privacy-preserving spatial key-

word similarity query scheme, PPSKS, to securely retrieve
the data records that satisfy the query constraints. In our
PPSKS scheme, we first transform the spatial query problem
into the set membership test, which makes it possible to
use our SSMT scheme. In addition, we observe that secure
circuits can also be introduced to securely calculate Jaccard
similarity. It is worth noting that we are the first to con-
sider the Jaccard similarity and access patterns in privacy-
preserving spatial keyword query schemes.
• Third, we propose a tree-based PPSKS scheme, de-

noted as PPSKS+, by employing an FR-tree index and a
predicate encryption technique. In order to further im-
prove performance, we present a vector bucketing technique

to split a large vector into sub-vectors. Theoretically, this
technique can reduce the computational overheads in key
generation, data outsourcing, and token generation phases.
• Finally, we formally analyze the security of our pro-

posed schemes and demonstrate that our proposed schemes
can attain our privacy goals. Besides, we conduct extensive
experiments to evaluate our proposed schemes, and the
results illustrate that our tree-based PPSKS+ scheme can
significantly reduce the computational costs of the linear
search scheme (PPSKS).

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model,
and design goal. Then, we review the preliminaries in
Section 3. After that, we present our PPSKS and PPSKS+
schemes in Section 4, followed by security analysis and per-
formance evaluation in Section 5 and Section 6, respectively.
Finally, we discuss some related works in Section 7 and
draw our conclusion in Section 8.

2 MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

0. Authorized
Keys 2. Query Request

5. Query Result

1. Data Outsource

(!={)!,#,)!,$,*!}
(%={)%,#,)%,$,*%}

⋯⋯
(&={)&,#,)&,$,*&}

!"#"$%&'() 1-()2$63()31-()2$7),52

*+,-.$/()0()

0. Registration

3. Query

Token

4. Query

Result

Fig. 1. System model under consideration

2.1 System Model
In our system model, we consider a typical outsourcing
model, which is comprised of four entities: a data owner O,
a powerful cloud server C, a query proxy P , and multiple
query users U = {u1, u2, · · · }, as shown in Fig. 1.

Data Owner O: In our system model, the data owner
O has a spatial keyword dataset X = {xi =
{(pi,x, pi,y), Wi} | 1 ≤ i ≤ n}, where (pi,x, pi,y) is the spatial
location of the data point, and Wi is the keyword set. In order
to make full use of the dataset, the data owner O offers the
spatial keyword similarity (SKS) query services to the query
users. However, since O may not be powerful in storage
and computing, it tends to outsource the dataset X and the
SKS query services to a cloud. Meanwhile, to ensure privacy,
the data owner O generates secret keys and encrypts the
outsourced data before uploading them to the cloud.

Cloud Server C: In our system, the cloud server C is con-
sidered as powerful in storage and computing. It receives
the outsourced dataset from the data owner O and provides
the SKS query services to the query users by leveraging the
received dataset.

Query Proxy P : In order to manage the generated keys,
the data ownerO can deploy a query proxy P and authorize
the generated keys to P . In our system, P is sitting between

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

3

the cloud server C and query users and can provide the
query token generation and query result decryption services
to the query users. It is worth noting that we can also make
the data ownerO undertake the tasks of P as adopted in [6],
[19]. In order to allow O to go offline after initialing the
whole system, we deploy P in our system.

Query Users U = {u1, u2, · · · }: In our system, query
users U should first register to the data owner O and obtain
the authorized keys. After that, U can enjoy the SKS query
services through the query proxy P .

2.2 Security Model

In our security model, the data owner O is considered to
be trusted because it initializes the whole system. For the
query users, we consider the registered ones to be honest, i.e.,
they will honestly follow the proposed scheme. However,
in our model, the cloud server C and the query proxy P
are considered as semi-honest [20], which indicates that they
will sincerely follow the proposed schemes but are curious
to learn some private information. For the cloud server C,
it may attempt to infer the outsourced data, query requests,
and query results. Regarding the query proxy P , it may be
interested in the query requests and query results received
from the query users U and cloud server C, respectively. We
assume that there is no collusion between any two entities
of the cloud server C, the query proxy P , and query users
U [9]. It is reasonable since they are strictly regulated, and
their reputation will be damaged when collusive behavior
is detected. Note that, as this work mainly focuses on
privacy computation techniques, other active attacks, e.g.,
authentication and verification issues, are beyond the scope
of this paper and will be discussed in our future work.

2.3 Design Goal

In this work, our goal is to present privacy-preserving and
efficient SKS query schemes. In particular, the following
objectives should be attained.
• Privacy Preservation: The basic requirement of our

proposed scheme is privacy preservation. First, we should
protect the privacy of outsourced data, query requests, and
query results against the cloud server C. Then, we should
protect the privacy of query requests and query results
against the query proxy P .

In addition, our proposed scheme should hide access
patterns for the cloud server C, which indicates C has no
idea about which data records are returned as the query
results. Assume C knows query distribution as background
knowledge. If the access patterns are leaked, C can learn the
access distribution of outsourced data over time and thus
infer query contents by correlating the query distribution
to the data access distribution. Once the content of an
encrypted query is known, C may further infer outsourced
data retrieved by this query [12], [14]. Therefore, hiding
access patterns is significant in privacy preservation.
• Efficiency: Achieving the privacy requirements will

inevitably incur additional costs. As a result, we also aim
to minimize the computational costs when performing the
privacy-preserving SKS queries.

! =

!!={roast, noodles, soup}

!"={seafood, cakes, chicken}

!#={noodles, pizza, beef}

!$!% !6 !"

!'={noodles, soup, cakes}}{ ,

!7

Fig. 2. An example of SKS query (the background map was extracted
from Google maps).

3 PRELIMINARIES

In this section, we first define the spatial keyword similarity
(SKS) queries. Then, we introduce bloom filter, fully homo-
morphic encryption, and secure circuits, which will be used
in our proposed scheme.

3.1 Spatial Keyword Similarity Queries

The spatial keyword queries have been extensively investi-
gated in both academic and industrial communities due to
its wide applications [1]–[3]. Given a spatial keyword query
Q = {(Rq,x, Rq,y), Wq}, where (Rq,x = [pq,xl, pq,xu], Rq,y =
[pq,yl, pq,yu]) are the ranges of x and y dimensions, and Wq
is the query keyword set, the basic spatial keyword query
retrieves the data records that satisfy: pi,x ∈ Rq,x, pi,y ∈ Rq,y ,
and Wq ⊆ Wi [1]. However, the exact matching of the
keyword sets lacks flexibility and practicality. For example,
the basic spatial keyword queries would not return the data
records if there is only one element of a query keyword
set mismatch (while all other elements are matched). To
make the spatial keyword query more flexible and practical,
the SKS queries are defined to measure the similarity of
keyword sets [5].

Definition 1 (Spatial Keyword Similarity Queries). Given a
spatial keyword dataset X , a query request Q, and a similarity
threshold τ , the spatial keyword similarity (SKS) queries return
the data records in X satisfying:

i) spatial constraint, i.e., pi,x ∈ Rq,x, pi,y ∈ Rq,y ;
ii) keyword constraint, i.e., sim(Wq, Wi) ≥ τ .

Same as [5], [15], [16], here we use the Jaccard similarity
for the keyword set similarity:

sim(Wq, Wi) =
|Wq ∩ Wi|
|Wq ∪ Wi|

. (1)

A simple example of the SKS query is shown in Fig. 2, in
which Wi (1 ≤ i ≤ 8) is the keyword set of the data record
xi = {(pi,x, pi,y), Wi}. Given a spatial query Q and a Jaccard
similarity threshold τ = 2/5, x5 is returned as the query
result. First, it is clear that {x2, x3, x5} satisfy the spatial
constraint. Then, since the Jaccard similarity of {x2, x3, x5}
is {1/5, 1/5, 1/2}, respectively, only x5 satisfies the keyword
constraint.

3.2 Bloom Filter

A bloom filter (BF) can determine whether an element exists
in a given set [21]. In general, given a set S, the bloom filter

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

4

represents all elements in S using an array of η bits, denoted
as BF[t], 1 ≤ t ≤ η. Initially, all bits in the array are set to 0.
Then, with γ independent hash functions {h1, · · · , hγ}, each
element x ∈ S is mapped to the array, i.e., BF[hi(x)] = 1.
Given an element x′, to determine whether x′ ∈ S or not,
we can check whether all BF[hi(x

′)] (1 ≤ i ≤ γ) are set to 1.
If not, x′ must be not a member of S. If yes, x′ is in S with
a high probability. Obviously, a bloom filter may yield false
positive. Assuming the size of the set S is µ, i.e., µ = |S|, the
false positive probability is:

fp = (1− (1− 1/η)γµ)
γ ≈ (1− e−γ

µ
η)γ . (2)

Given µ and η, the value of γ that minimizes the false positive
probability is: γ = ln 2 · (η/µ). In this case, fp ≈ (1/2)γ . If
fp, γ, and µ are given, we could obtain η = γ ·µ/ ln 2, which
is the optimal size of the bloom filter array.

3.3 Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) is a popular crypto-
graphic primitive that can support computations through
encrypted data [22]. Due to its nice homomorphic prop-
erties, it is widely used to design searchable encryp-
tion schemes [23], [24]. Typically, an FHE scheme satisfies
two homomorphic properties: i) Homomorphic addition:
E(m1)+E(m2)→ E(m1+m2); ii) Homomorphic multiplica-
tion: E(m1)·E(m2)→ E(m1 ·m2), wherem1 andm2 are two
plaintexts, and E(m1) and E(m2) are the corresponding FHE
ciphertexts. In our proposed scheme, we employ the FHE
scheme as cryptography primitive and exploit its addition
and multiplication homomorphic properties. Since our pro-
posed schemes can be constructed on any FHE scheme, here
we do not show the algorithms of FHE and refer readers
to [25], [26] for details.

3.4 Secure Circuits
Assume there are two non-negative integers {x, y} of the
same bit length, and the corresponding encrypted bit se-
quences are:

E(~x) = (E(xj)|0j=l) =
(
E(xl),E(xl−1), · · · ,E(x0)

)
;

E(~y) = (E(yj)|0j=l) =
(
E(yl),E(yl−1), · · · ,E(y0)

)
,

where xj , yj ∈ {0, 1}, j = l, · · · , 1, 0, and l is the most
significant bit position.
• Secure addition circuit [27]. Given E(~x) and E(~y),

the secure addition circuit, denoted as Sadd, can compute
E(~z) = (E(zj)|0j=l) = Sadd

(
E(~x),E(~y)

)
satisfying z = x+ y,

where z is an integer, and E(~z) is its encrypted bit sequence.
The main idea of Sadd is to derive logical expressions from
the truth table of the addition circuit and then adopt the
homomorphic properties of FHE to execute the derived
logical expressions over ciphertexts. See details in [27].
• Secure comparison circuit [28]. Given E(~x) and E(~y),

the secure comparison circuit, denoted as Scom, can output
E(z) = Scom

(
E(~x),E(~y)

)
= E(1) if x < y, otherwise

E(z) = E(0). The main idea of Scom is to identify the most
significant differing bit of two bit sequences, and we can
formalize it as follows, seeing the detailed analysis in [28]:

E(z) =
l∑

j=0

((
E(xj) < E(yj)

) ∏
j<t<l

(
E(xt) = E(yt)

))
,

TABLE 1
Notations used in our proposed scheme

Notation Definition

(pk, sk) the public key and secret key of FHE
mk the master key held by the cloud server C
sski a shared key of query user ui, sski = H(mk, idi)
ssi a session key at timestamp ts, ssi = H(sski, ts)
µ the number of elements to be put into bloom filter
γ the number of hash functions of bloom filter
η the length of bloom filter

BF∗ the bloom filter corresponding to ∗
ϕ the maximum size of keyword sets
t∗ the size of the corresponding set
w the bit length of an integer
xi a spatial keyword data point, 1 ≤ i ≤ n

(pi,x, pi,y) the spatial location of the data point xi
Wi the keyword set of the data point xi

(Rq,x, Rq,y) the spatial rectangle of query Q
Wq the keyword set of query Q

(τ1, τ2) two integers represent the threshold τ
~x the bit sequence of x
Φ the cardinality of intersection, Φ = |Wq ∩ Wi|
k the number of query results
vj a vector with n elements, 1 ≤ j ≤ k
π the permutation function

BM∗ a bitmap of the corresponding keyword set
ρ the number of unique keywords in the dataset

(Tx, Ty) the upper bound of x and y dimensions
d the number of dummy values
κ the length of a sub-vector
ξ the number of sub-vectors
M the invertible random matrix

where
(
E(xj) < E(yj)

)
= E(yj · (xj + 1)) and

(
E(xt) =

E(yt)
)

= E(yt + xt + 1). Note that, we need to calculate
z = z mod 2 to ensure z ∈ {0, 1}.
• Secure multiplication circuit. Given E(~x) and E(~y), the

secure multiplication circuit, denoted as Smul, can compute
E(~z) = (E(zj)|0j=2l+1) = Smul(E

(
~x),E(~y)

)
satisfying z =

x · y. It can be achieved by calculating Sadd with l times:

E(~z) =
l∑

j=0

(
E(0), · · · ,E(0)︸ ︷︷ ︸

l+1−j

,E(yj) · E(~x),E(0), · · · ,E(0)︸ ︷︷ ︸
j

)
.

Note that here the sum symbol indicates performing the
secure addition circuit, Sadd.

Now, we give examples to illustrate the above secure
circuits. If we set x = 5 and y = 7, we would have E(~x) =
(E(0),E(1),E(0),E(1)) and E(~y) = (E(0),E(1),E(1),E(1)).
Thus, Sadd

(
E(~x),E(~y)

)
= (E(1),E(1),E(0),E(0)) = E(~12),

Scom
(
E(~x),E(~y)

)
= E(1), and Smul

(
E(~x),E(~y)

)
=

(E(0),E(0),E(1),E(0),E(0),E(0),E(1),E(1)) = E(~35).

4 OUR PROPOSED SCHEMES

In this section, we first propose a novel secure set mem-
bership test (SSMT) scheme, which servers as the building
block. Then, we present our privacy-preserving spatial key-
word similarity query scheme, PPSKS. Finally, we carefully
design a tree-based PPSKS scheme, denoted as PPSKS+, to
achieve a sub-linear search efficiency. Before delving into the
details, we provide a notation table (Table 1) to describe the
main notations used in our proposed schemes.

4.1 Secure Set Membership Test Scheme
Given a set S with µ elements, our SSMT scheme determines
whether an element x ∈ S or not in a fully secure manner,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

5

namely, without leaking any information, including the set
S, the element x, and the information about whether x ∈ S
or not. Our key idea is to map all elements in S into a bloom
filter, denoted as BFs, and map x into another bloom filter,
denoted as BFx, using the same hash functions and keeping
the same length as BFs. Then, we encrypt each bit in these
bloom filters with FHE, denoted as E(BFs) and E(BFx),
respectively, and calculate the inner product of these two
encrypted bloom filters. Finally, the Lagrange interpolation
function is used to output E(1) if x ∈ S, otherwise E(0). We
formally describe our SSMT scheme as follows.
• SSMT.Setup(λ): Given a security parameter λ, the

setup algorithm outputs an FHE key pair (pk, sk), where pk
is the public key, and sk is the secret key. Then, it chooses γ
independent hash functions H = {h1, h2, · · · , hγ}.
• SSMT.Interpolation(γ): Given the number of hash

functions γ, the interpolation algorithm chooses a
large prime number p and constructs a polynomial
function f(x) using Lagrange interpolation at nodes
{(0, 0), (1, 0), (2, 0), · · · , (γ − 1, 0), (γ, 1)}:

f(x) = a0 + a1x+ a2x
2 + · · · aγxγ mod p.

• SSMT.Enc(S, pk,H): On input of a set S, the public key
pk, and a set of hash functions H, the encryption algorithm
maps all elements in S into a bloom filter BFs, encrypts each
bit in BFs with the public key pk, and outputs E(BFs) as the
result, i.e., E(BFs) = SSMT.Enc(S, pk,H).
• SSMT.Token(x, pk,H): On input of an element x, the

public key pk, and a set of hash functions H, the token gen-
eration algorithm maps x into a bloom filter BFx, encrypts
each bit in BFx with the public key pk, and outputs E(BFx)
as the result, i.e., E(BFx) = SSMT.Token(x, pk,H).
• SSMT.Check (E(BFs),E(BFx), f(x)): Given E(BFs),

E(BFx), and f(x), the check algorithm determines whether
x ∈ S with the following two steps:

Step-1. Conduct the inner product operation between
E(BFs) and E(BFx) and output E(σ) as the result:

E(σ) = E(BFs) ◦ E(BFx) =

η∑
t=1

(
E(BFs[t]) · E(BFx[t])

)
= E

(η∑
t=1

(BFs[t] · BFx[t])
)
,

(3)

where η is the length of both bloom filters.
Step-2. Calculate E(θ) as the result of the check algorithm

by integrating f(x) and E(σ):

E(θ) = f(E(σ)) = E(f(σ)).

Correctness. We say our SSMT scheme is correct when it
outputs E(θ) = E(1) if x ∈ S, otherwise E(θ) = E(0).

Proof. From Eq. (3), we know that σ is one of the values in
the set {0, 1, 2, · · · , γ}. Only when σ = γ, we have x ∈ S
according to the definition of bloom filter (see Section 3.2).
Since our polynomial function f(x) is interpolated at nodes
{(0, 0), (1, 0), (2, 0), · · · , (γ−1, 0), (γ, 1)}, we have f(γ) = 1
and f(x) = 0 for x = 0, 1, · · · γ − 1. Therefore, from Step 2,
we have x ∈ S⇔ σ = γ ⇔ E(θ) = E(f(γ)) = E(1).

In Fig. 3, we give an example to determine whether a
set S = {x, y} contains x and x′ separately. Assume the

E(0) E(1) E(0) E(1) E(0) E(1) E(1) E(0)

𝒉𝟐 𝒉𝟏𝒉𝟏 𝒉𝟐

S = {x, y}

E(𝐁𝐅𝐬)

E(0) E(1) E(0) E(0) E(0) E(1) E(0) E(0) E(1) E(0) E(0) E(1) E(0) E(0) E(0) E(0)E(𝐁𝐅𝐱) E(𝐁𝐅𝐱!)
𝐱 ∈ S ? 𝐱% ∈ S ?

E(𝛔) = E(𝐁𝐅𝐬) E(𝐁𝐅𝐱)=E(2) E(𝛔) = E(𝐁𝐅𝐬) E(𝐁𝐅𝐱!) = E(1)

E(𝜽) =𝒇(E(𝟐))=E(𝒇(𝟐)) = E(1) E(𝜽) =𝒇(E(𝟏))=E(𝒇(𝟏)) = E(0)𝐱 ∈ S 𝐱% ∉ S⟹ ⟹

∘ ∘

Fig. 3. An example of our SSMT scheme, in which the length of bloom
filters is 8, i.e., η = 8, the number of hash functions is 2, i.e., γ=2, and
f(x) is interpolated at nodes {(0, 0), (1, 0), (2, 1)}.

bloom filter’s length is 8, and two hash functions are used
to map elements to a bloom filter. In this case, f(x) can
be interpolated at nodes {(0, 0), (1, 0), (2, 1)}. If we assume
p = 71, we could obtain f(x) = 0 + 35x + 36x2 mod 71.
As shown in Fig. 3, x ∈ S due to E(θ) = E(1), while x′ 6∈ S
as E(θ) = E(0).

Remark. To securely determine whether an element is in
a set, existing schemes [6], [9] leak the decision information
about x ∈ S or x 6∈ S. However, our proposed scheme can
hide this information by integrating Lagrange interpolation
function into FHE encrypted bloom filters. We argue that,
if a compute-then-compare operation, which is hard to be
securely implemented on a single-server model [17], can
be converted into the problem of set membership test, our
SSMT scheme can provide a fully secure solution.

4.2 Basic Construction: Our PPSKS Scheme

4.2.1 Overview of Our PPSKS Scheme

Recalling the definition of the SKS query (Definition 1), since
the spatial constraint is to check whether a value belongs to
a range, it can be securely achieved by our SSMT scheme.
However, it is still challenging to deal with the keyword
constraint. This is because we need to calculate the cardi-
nality of intersection and union of two sets and compare
their quotient with τ ∈ [0, 1]. To address it, we transform
the keyword constraint into the following inequality:

sim(Wq, Wi) ≥ τ ⇒ sim(Wq, Wi) ≥
τ1
τ2

Φ=|Wq∩Wi|−−−−−−→ Φ

|Wq|+ |Wi| − Φ
≥ τ1
τ2

⇒ (τ1 + τ2)Φ ≥ τ1|Wq|+ τ1|Wi|,

(4)

where τ1 and τ2 are two integers that can represent τ . Con-
sequently, the keyword constraint is transformed into calcu-
lating Φ (set membership test) and determining whether the
inequality (Eq. (4)) holds. Although it is simple to securely
compute Φ with our SSMT scheme, it is non-trivial to deter-
mine Eq. (4) without leaking the values in the inequality. To
tackle it, our idea is to convert the result of SSMT into a bit
sequence and then introduce secure circuits (Section 3.4). In
this way, we can securely determine whether Eq. (4) holds
or not. If yes, we can obtain E(1), otherwise E(0).

From the above analysis, we know that the SSMT scheme
will be used to securely compute Φ for our PPSKS scheme.
However, the bloom filter length η will negatively affect the
performance of our PPSKS scheme due to the inner product
operation in the SSTM scheme (Eq. (3)). As discussed in
Section 3.2, we can improve the efficiency of our PPSKS
scheme by reducing the number of elements µ mapped into

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

6

a bloom filter. In this paper, we employ a prefix encoding
technique [29] to reduce µ, leading to a smaller η.

Given a value x and a range R, the prefix encoding tech-
nique [30] can encode them into two sets: F(x) and S(R),
respectively. F(x) = {x1x2 · · ·xw, x1x2 · · ·xw−1∗, · · · , x1 ∗
· · · ∗, ∗ ∗ · · · ∗} is a set containing w + 1 elements by contin-
ually replacing x’s bit with ∗, where w is the bit length of
x. S(R) is a set generated by extracting the minimum set
of prefix elements covering the range R. For example, if we
assume x = 6 and R = [3, 7], F(6) = {110, 11∗, 1 ∗ ∗, ∗ ∗ ∗}
and S([3, 7]) = {011, 1 ∗ ∗}. Therefore, determining x ∈ R
is converted into checking whether F(x)∩S(R) = ∅ or not.
If yes, x /∈ R, otherwise x ∈ R. As demonstrated in [30], the
number of elements in S(R) is at most 2w−2. Thus, we can
reduce µ from all integers in the range of R to 2w − 2.

4.2.2 Description of Our PPSKS Scheme

Based on the above transformation, prefix encoding tech-
nique, and our SSMT scheme, we construct our PPSKS
scheme, which is comprised of five phases: 1) system initial-
ization; 2) data outsourcing; 3) token generation; 4) search;
5) data recovery.

System Initialization. In our PPSKS scheme, the data
owner O initializes the whole system. First, O employs
SSMT.setup(λ) to generate the FHE key pair (pk, sk) and
γ hash functions H = {h1, h2, · · · , hγ}. Then, O generates
a master key mk. Next, O chooses a secure symmetric key
encryption SE(), e.g., AES-256, and a secure hash function
H(). After that, the data owner O has the following tasks:
• O authorizes sk to the query proxy P and mk to the

cloud server C, as shown in Fig. 4.
• When a query user ui registers to the system with

his/her identity idi, O generates a shared key sski =
H(mk, idi) for ui and authorizes {sski,H} to ui.

Finally, the data owner O publishes {pk,SE(),H(), γ}.
Note that, in our proposed schemes, all data transmissions
are via secure channels.

Data Outsourcing. Assume the data owner O has a
dataset X = {xi = {(pi,x, pi,y), Wi} | 1 ≤ i ≤ n}, where
(pi,x, pi,y) is the location information and scaled into inte-
gers. Each keyword in Wi is also encoded into an integer. For
each data record xi = {(pi,x, pi,y), Wi}, the data owner O
prepares the outsourced data with the following steps:
• Step-1. O generates F(pi,x) and F(pi,y) with the

prefix encoding technique (see details in Section 4.2.1).
Then, by invoking the SSMT.Enc algorithm, O constructs
two encrypted bloom filters, denoted as E(BFpi,x) and
E(BFpi,y), where E(BFpi,x) = SSMT.Enc

(
F(pi,x), pk,H

)
and E(BFpi,y) = SSMT.Enc

(
F(pi,y), pk,H

)
.

• Step-2. Regarding the keyword set Wi, O constructs
an encrypted bloom filter E(BFWi) = SSMT.Enc(Wi, pk,H).
Then, O encodes the value |Wi| (the number of keywords)
into its bit sequence format and encrypts each bit as an FHE
ciphertext. We denote the encrypted bit sequence as E(|~Wi|).
• Step-3. O encrypts each data record {(pi,x, pi,y), Wi} as

{
(
E(pi,x),E(pi,y)

)
,E(Wi)}, where E(Wi) indicates encrypting

each keyword in Wi into an FHE ciphertext. Notably, O will
pad E(0) to make each E(Wi) have ϕ elements, where ϕ =
arg maxi∈[1,n](|Wi|).

Finally, the data owner O outsources

E(xi) ={E(BFpi,x),E(BFpi,y),E(BFWi),(
E(pi,x),E(pi,y)

)
,E(Wi),E(|~Wi|)}

(5)

to the cloud server C, as shown in Fig. 4. To ensure the
consistency of the bloom filter length, O sets:
ηpx = darg max

i∈[1,n]

(
(2wpi,x − 2) · γ/ ln 2

)
e → length of BFpi,x

ηpy = darg max
i∈[1,n]

(
(2wpi,y − 2) · γ/ ln 2

)
e → length of BFpi,y

ηW = dϕ · γ/ ln 2e → length of BFWi ,
(6)

where wpi,x and wpi,y are the bit length of pi,x and pi,y ,
respectively. Finally, O publishes {ηpx , ηpy , ηW}.

Token Generation. When a query user ui launches an
SKS query, i.e., Q = {Rq, Wq} and {τ1, τ2}, where Rq =
(Rq,x = [pq,xl, pq,xu], Rq,y = [pq,yl, pq,yu]), the query token
can be generated as follows.
• Step-1. ui encodes Rq,x and Rq,y into S(Rq,x) and

S(Rq,y) respectively by using the prefix encoding tech-
nique. Then, ui maps each element in S(Rq,x) into a
bloom filer and generates a set of bloom filters BFRq,x =
{BFRq,x,1 ,BFRq,x,2 , · · · ,BFRq,x,tx}, where tx is the number of
elements in S(Rq,x), and each bloom filter has the length
ηpx . After that, ui chooses a set of random values, denoted
as rx, which has tx · ηpx random positive integers, i.e.,
|rx| = tx · ηpx . Next, ui adds the random values of rx into
the corresponding element in BFRq,x . We denote the new
bloom filter set as BF′Rq,x .

Similarly, ui can generate BFRq,y that has ty bloom filters,
and each of them has the length ηpy . After adding a set of
random values, denoted as ry (|ry| = ty · ηpy), into BFRq,y ,
ui can obtain a new bloom filter set BF′Rq,y .
• Step-2. Regarding the query keyword set Wq , ui

constructs a bloom filter for each keyword in Wq .
Assuming there are tw keywords in Wq , i.e., tw =
|Wq|, ui generates BFWq = {BFWq,1 ,BFWq,2 , · · · ,BFWq,tw },
and each bloom filter has the length ηW. Then, ui
chooses tw · ηW random positive integers, organized as
rw = (r1,1, r1,2, · · · , r1,ηW , · · · , rtw,1, rtw,2, · · · , rtw,ηW), and
adds them into each bit of BFWq . We denote the new bloom
filters as BF′Wq = {BF′Wq,1 ,BF

′
Wq,2

, · · · ,BF′Wq,tw }.
Besides, ui encodes tw · τ1, τ1, and τ1 + τ2 into

bit sequences, denoted as ~τt, ~τ1, and ~τ2, where the
lengths of {~τt, ~τ1, ~τ2} are {lt, l1, l2}. Next, ui generates
three random sets: rτt = (rτt,1, rτt,2, · · · , rτt,lt), rτ1 =
(rτ1,1, rτ1,2, · · · , rτ1,l1), and rτ2 = (rτ2,1, rτ2,2, · · · , rτ2,l2)
and adds them into ~τt, ~τ1, and ~τ2, respectively. The ran-
domized bit sequences are denoted as {~τ ′t , ~τ ′1, ~τ ′2}.
• Step-3. With the authorized sski, ui first computes a

session key ssi = H(sski, ts), where ts is the timestamp.
Then, using the session key ssi, ui encrypts the random sets
{rx, ry, rw, rτt , rτ1 , rτ2} into:

SER = SEssi(rx||ry||rw||rτt ||rτ1 ||rτ2)

and sends the following encoded query request:

{BF′Rq,x ,BF
′
Rq,y

,BF′Wq , ~τ
′
t , ~τ
′
1, ~τ
′
2, SER, idi, ts}

to the query proxy P . Here, since we add random values
into each bloom filter and bit sequence, it can prevent P
from inferring the original query request Q and {τ1, τ2}.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

7

!"#"$%&'() *+(),$-)./,01.+2$3()4() *+(),$56()$!!
!" #"

Generate	!"!"#"
##"; = H(!", /0;) ##";

x; = p;,<, p; = ,W; !"/ ∈[1,	8]

BF>!,# BF>!,$ BF?!

!%" !%# !&

"# FHE

E(BF>!,#) E(BF>!,$) E(BF?!)
E x; = E(BF>!,# , E(BF>!,$), E(BF?!),

E p;,< , E p;,= , E W; , E(|W;|)}
{E x; |	/ ∈[1,	8]}

BF@', #

@ = RA,<, RA,= ,WA, BB, BC

!C<

BF@', $

!C= !CD

BF?'

C< D E># CD D EDC= D E>$
#$%&'("%)(*+#,

Encoded @: {BF@', #
E , BF@', $

E , BF?'
E ,

BF
E, BB

E, BC
E, SER, /0;, C#}

{BF@', #
E ,	BF@', $

E ,	BF?'
E ,

BF
E, BB

E, BC
E}

{E(BF@', #
E),	E(BF@', $

E),	 E(BF?'
E),

E(BF
E),	E(BB

E), E(BC
E), SER, /0;, C#}

TokenB:Remove		random	numbers

{E(BF@', #),	E(BF@', $), E(BF?'),
E(BF)	,	E(BB), E(BC)}

E(BF?!)
!

E(BF?')

!!"#$
%&'()

= E(JD,B)
= E(JD,C)
= E(JD,F()

E(ΩG)	=	Smul(E BC , E(Φ))
E(ΩH)	=	Sadd E BF , Smul(E(BB), E(|W;|))
E(z)	=	E(1)	- Scom(E(ΩI),	E(ΩH))

"# FHE

!

SPadd

Fig. 4. The main process of PPSKS, in which SER contains the encrypted random numbers generated by query user ui and can be decrypted by C
with mk. Notably, on the cloud server C side, we only take the calculation of E(z) as an example, in which z = 1 indicates the query keyword set
and the data keyword set satisfy the keyword constraint, i.e., Eq. (4) holds.

• Step-4. Upon receiving the encoded query request,
P can encrypt bloom filters and bit sequences into
{E(BF′Rq,x),E(BF′Rq,y),E(BF′Wq),E(~τ ′t),E(~τ ′1),E(~τ ′2)} with the
FHE secret key sk. Then, P forwards the query token:

Token1 ={E(BF′Rq,x),E(BF′Rq,y),E(BF′Wq),

E(~τ ′t),E(~τ ′1),E(~τ ′2), SER, idi, ts},
(7)

to the cloud server C. See the process in Fig. 4.
Search. After receiving Token1, C first calculates

the session key ssi with the authorized master key
mk, i.e., ssi = H

(
H(mk, idi), ts

)
. Then, C can re-

cover {rx, ry, rw, rτt , rτ1 , rτ2} from SER with ssi. Next,
C exploits the homomorphic properties of FHE to re-
move these random sets {rx, ry, rw, rτt , rτ1 , rτ2} from
{E(BF′Rq,x),E(BF′Rq,y),E(BF′Wq),E(~τ ′t),E(~τ ′1),E(~τ ′2)} and get:

{E(BFRq,x),E(BFRq,y),E(BFWq),E(~τt),E(~τ1),E(~τ2)}.

After that, the cloud server C can compute an encrypted
flag set E(Sf) = {E(fi) | i ∈ [1, n]}, in which fi = 1 if the
data record xi satisfies the query Q, otherwise fi = 0. The
concrete process is as follows.
• Step-1. C invokes SSMT.Interpolation(γ) to generate a

polynomial function f(x).
• Step-2. C first checks whether pi,x ∈ Rq,x with the

SSMT.Check algorithm. For each bloom filter E(BFRq,x,j) in
E(BFRq,x), where j ∈ [1, tx], the cloud server C obtains:

E(θx,j) = SSMT.Check
(
E(BFpi,x),E(BFRq,x,j), f(x)

)
.

Afterward, C computes E(θx) =
∑tx
j=1 E(θx,j) to represent

whether pi,x ∈ Rq,x. If yes, E(θx) = E(1), otherwise E(0).
This is because, for the prefix encoding technique, there
is only one common element for F(x) and S(R) when
x ∈ R, i.e., |F(x) ∩ S(R)| = 1. Similarly, C can obtain
E(θy) to indicate whether pi,y ∈ Rq,y or not by computing∑ty
j=1 SSMT.Check

(
E(BFpi,y),E(BFRq,y,j), f(x)

)
.

Algorithm 1 Calculating E(~Φ)

Input: An encrypted data, E(xi). An encrypted query token, Token1.
The maximum bit length of secure circuits lmax;

Output: The number of intersecting keywords, E(~Φ);
1: E(~Φ)← {E(0)|0j=lmax−1};
2: for each E(BFWq,j) in E(BFWq) do
3: E(θw,j)← SSMT.Check

(
E(BFWi),E(BFWq,j), f(x)

)
;

4: E(~Φ)← SPadd
(
E(~Φ),E(θw,j), lmax

)
;

5: SPadd(E(~x), E(θ), lmax)
6: Ecarry← E(θ);
7: for j ← 0 to lmax − 1 do
8: Esum← E(xj) + Ecarry; Emul← E(xj) · Ecarry;
9: E(zj)← Esum + 2 · Emul · E(−1)

10: Ecarry← Emul;
11: return E(~z)← (E(zj)|0j=lmax−1);

• Step-3. Regarding the keyword set, C first obtains
E(θw,j) = SSMT.Check

(
E(BFWi),E(BFWq,j), f(x)

)
, where

j ∈ [1, tw]. After calculating E(Φ) =
∑tw
j=1 E(θw,j), C needs

to determine whether Eq. (4) holds or not. If yes, E(1) is pro-
duced, otherwise E(0). However, since all values in Eq. (4)
are encrypted, it is hard to directly execute the comparison.
Our solution is to introduce secure circuits by providing
E(|~Wi|) and {E(~τt),E(~τ1),E(~τ2)}. Nevertheless, there is still
a gap between E(Φ) and E(~Φ) as the prerequisite of using
secure circuits is to convert E(Φ) into its bit sequence format
E(~Φ) without decryption. To tackle it, we devise a secure
partial addition circuit, denoted as SPadd, and illustrate the
conversion in Algorithm 1.

With E(~Φ), C can obtain the left value of Eq. (4),
denoted as Ωl (Ωl = (τ1 + τ2) · Φ), using Smul, i.e.,
E(~Ωl) = Smul

(
E(~τ2),E(~Φ)

)
, where ~τ2 is the bit se-

quence of τ1 + τ2. Then, with E(~τ1), E(~τt), and E(|~Wi|),
C can obtain the right value of Eq. (4), denoted as Ωr
(Ωr = τ1|Wq| + τ1|Wi|), using Smul and Sadd, i.e., E(~Ωr) =

Sadd
(
E(~τt), Smul

(
E(~τ1),E(|~Wi|)

))
, where ~τt = τ1 · tw =

τ1 · |Wq|. Finally, C uses Scom to check Eq. (4), i.e., E(z) =

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

8

Scom
(
E(~Ωl),E(~Ωr)

)
. If Eq. (4) holds, z = 1, otherwise z = 0.

We depict the process of computing E(z) in Fig. 4. Note that
here we need to flip z by computing E(z) = E(1 − z) since
Eq. (4) requires “≥”, while Scom ensures “<”.
• Step-4. C calculates E(fi) = E(θx) ·E(θy) ·E(z) = E(θx ·

θy ·z), where E(θx) and E(θy) have been calculated in Step-2.
Then, C sends E(Sf) = {E(fi) | i ∈ [1, n]} to the query proxy
P after applying permutation π on E(Sf). In Fig. 5, we give
an example of E(Sf) with n = 5, in which we assume the
second and fifth data records satisfy the query Q.
• Step-5.P first recovers Sf = {fi | i ∈ [1, n]}with the se-

cret key sk. If there are k data records satisfying the queryQ,
P constructs k encrypted vectors {E(v1),E(v2), · · · ,E(vk)},
where E(vj) = {E(vj,1),E(vj,2), · · · ,E(vj,n)}, j ∈ [1, k]. For
an encrypted vector E(vj), only one element is E(1), and
others are E(0). After that, P forwards {E(vj) | j ∈ [1, k]} to
the cloud server C. In the example of Fig. 5, since there are
two data records satisfying the query Q, the query proxy P
generates two encrypted vectors {E(v1),E(v2)}. If k = 0, P
returns ⊥ to the query user ui.

E(0) E(1) E(0) E(0) E(1) 𝝅E(𝐒𝒇): E(1) E(0) E(1) E(0) E(0)

E(𝐯𝟏)

E(𝐯𝟐)

E(1) E(0) E(0) E(0) E(0)

E(0) E(0) E(1) E(0) E(0)

𝝅$𝟏E(0) E(1) E(0) E(0) E(0)

E(0) E(0) E(0) E(0) E(1)

Fig. 5. An example of constructing {E(vj) | j ∈ [1, k]}, in which there
are five data records, and the second and fifth ones satisfy the queryQ.

• Step-6. Upon receiving {E(vj) | j ∈ [1, k]}, the cloud
server C applies the inverse permutation π−1 on each vector
E(vj) and then calculates the k encrypted results as follows:

E(pj,x) =
n∑
i=1

(
E(vj,i) · E(pi,x)

)
= E(

n∑
i=1

(
vj,i · pi,x)

)
E(pj,y) =

n∑
i=1

(
E(vj,i) · E(pi,y)

)
= E(

n∑
i=1

(
vj,i · pi,y)

)
E(Wj) =

n∑
i=1

(
E(vj,i) · E(Wi)

)
= E(

n∑
i=1

(
vj,i · Wi)

)
,

(8)

where j ∈ [1, k]. After that, C chooses 2 + ϕ random
positive integers: rj = (rj,x, rj,y, rj,1, rj,2, · · · , rj,ϕ) for each
encrypted result, in which rj,x is added into E(pj,x), rj,y
is added into E(pj,y), and {rj,1, rj,2, · · · , rj,ϕ} are added
into encrypted keywords E(Wj). We denote the new result as
{E(p′j,x),E(p′j,y),E(W′j)}. After encrypting rj with the query
user’s session key ssi, the cloud server C sends

ERes = {
(
E(p′j,x),E(p′j,y)

)
,E(W′j),SEssi(rj), idi | j ∈ [1, k]}

to the query proxy P .
Data Recovery. Upon receiving ERes, P first recovers

{(p′j,x, p′j,y), W′j | j ∈ [1, k]} with the FHE secret key sk.
After that, P forwards the query result:

Res′ = {(p′j,x, p′j,y), W′j ,SEssi(rj) | j ∈ [1, k]}

to the query user ui. With Res′, ui first recovers rj using
his/her session key ssi. Finally, ui obtains the desired result:
Res = {(pj,x, pj,y), Wj | j ∈ [1, k]} by removing rj .

Remark. Our PPSKS scheme is the first to consider
the keyword set similarity while hiding access patterns. To

achieve it, there are three key points: i) transforming the Jac-
card similarity into the combination of set membership test
and a simple compute-then-compare operation; ii) designing
the SSMT scheme that uses the Lagrange interpolation func-
tion to map encrypted values into E(0) or E(1); iii) devising
SPadd to convert E(Φ) into E(~Φ) without decryption and
introducing secure circuits. Although our PPSKS scheme
leaks the number of data records for the query result, it is
a trivial leakage, and we will prove that it is secure against
the semi-honest cloud server and query proxy in Section 6.

4.3 Tree-based Construction: Our PPSKS+ Scheme
4.3.1 Overview of Our PPSKS+ Scheme
Although our PPSKS scheme can hide access patterns
among n data records, its performance is limited to be linear
to the dataset size. To improve efficiency, we propose a
tree-based privacy-preserving SKS query scheme, denoted
as PPSKS+, to attain a sublinear efficiency. Specifically, we
first design an index that we call FR-tree by modifying
R*-tree [31]. Then, we encrypt the FR-tree by adopting
a predicate encryption technique for non-leaf nodes and
Eq. (5) for leaf nodes. Finally, we employ a vector bucketing
technique to improve the efficiency of our PPSKS+ scheme.

Build FR-tree over plaintexts. Same as R*-tree [31], our
FR-tree groups nearby spatial data and represents them
with their minimum bounding rectangle (MBR) in the higher
level of the tree, as shown in Fig. 6. Different from R*-tree,
however, our FR-tree counts the keyword frequency of the
given dataset X and sorts them with the decreasing order
according to the frequencies. Then, for each keyword set Wi,
we can build a bitmap, which is denoted as BMi and has
the length ρ as the same as the number of unique keywords
in the dataset. Next, our FR-tree merges BMi from bottom
to top. For instance, in Fig. 6, BM9 and BM10 are merged
into a new bitmap {1, 1, 0, 1, 0, 1, 0, 1, 0}. In this way, we
can effectively filter out the data records whose keyword
sets do not satisfy the constraint of Jaccard similarity [32].
The details of our FR-tree are shown as follows.
• Root node. The root node must intersect with a spa-

tial keyword query in both spatial and keyword domains.
Therefore, we ignore the root node and store nothing in it.
•Non-leaf nodes. Each non-leaf node represents an MBR

containing two components: i) the spatial rectangle of MBR
R = (Rx, Ry), where Rx = [pxl, pxu] and Ry = [pyl, pyu]; ii)
the merged bitmap BM.
• Leaf nodes. Each leaf node represents a spatial key-

word data record xi = {(pi,x, pi,y), Wi}. Note that since the
bitmap of Wi is only for generating merged bitmaps, we do
not store it in the corresponding leaf node.

Given a query Q = {Rq, Wq} and an MBR={R,BM}, if
Rq intersects with R, and the inner product of the bitmap
BMq (generated by Wq) and the merged bitmap BM is larger
than 0, we need to access the MBR’s children. Formally, the
condition of accessing MBR’s children is to check:

(R ∩ Rq 6= ∅) ∧ (BM ◦ BMq > 0). (9)

Since our keyword constraint is the Jaccard similarity, we
can modify the above condition and adopt a more reason-
able and stricter condition:

(R ∩ Rq 6= ∅) ∧ (BM ◦ E(BMq) > 0), (10)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

9

)!)"
)#

)$)%)+)'
)4

)))$*
"#$"

"#$%

"#$!

"#$+

"#$$ "#$#

ROOT

"#$$ "#$#

"#$" "#$% "#$! "#$+

)$)%)#)")!)))$*)+)4)'

BM #$ %&'! BM #$%&'"

&% #$ %&'#"+ = {(#+,-, #+,.), %+ } & ∈ [),)*]

,-/

,-01

,-2

,-3

,-4

%0 pizza, soup

%6 noodles, pizza, beef

%7 roast, noodles, soup

%5 chicken, pizza

%8 seafood, cakes, chicken

%2 noodles, soup

%3 soup, beef

%4 pizza, noodles

%/ coffee, beef, pizza

%01 pizza, soup, roast

Keyword pizza soup noodles beef chicken roast cakes coffee seafood
Frequency 6 5 4 3 2 2 1 1 1

1 0 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0

1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0

1 1 1 1 0 1 0 1 0

Fig. 6. An example of FR-tree, in which the keyword dictionary size is 9, i.e., ρ = 9.

where E(BMq) means removing the first tw−(b(1−τ)twc+1)
elements in Wq before mapping Wq’s elements into BMq . See
details in [32]. Here, tw = |Wq|, and τ is a similarity threshold.

Encrypt FR-tree. In our FR-tree, each leaf node is en-
crypted as Eq. (5). For encrypting the MBRs of non-leaf
nodes, we propose a predicate encryption technique by
modifying the hyper-rectangle intersection predicate en-
cryption used in [18].

On the one hand, with regard to the spatial rectangle,
our main idea is based on the following transformation:

R ∩ Rq 6= ∅⇔
{

(pxl ∈ [1, pq,xu]) ∧ (pxu ∈ [pq,xl, Tx])

(pyl ∈ [1, pq,yu]) ∧ (pyu ∈ [pq,yl, Ty]),
(11)

where Tx and Ty are the upper bound of x and y dimensions,
respectively. Consequently, we can convert R into a vector
VR and encrypt VR into the corresponding ciphertext CVR
by using the matrix encryption, i.e., CVR = VRM, where
M is a random invertible matrix. Given a query rectangle
Rq , we convert it into a vector VRq and encrypt VRq into
CVRq = VRq(M

−1)T . Here T means transposition. Finally, we
can check whether CVR ◦ CVRq = VR ◦ VRq > 0 or not. If yes, it
means R ∩ Rq 6= ∅, otherwise Rq ∩ R = ∅.

On the other hand, we can determine whether the
keyword condition is satisfied by computing CBM ◦ CBMq,
where CBM = BM · M and CBMq = E(BMq) · (M−1)T . If
CBM ◦ CBMq = BM ◦ E(BMq) > 0, the keyword condition is
satisfied, otherwise not.

However, we cannot directly use the above approach
to determine whether an MBR’s children should be ac-
cessed. That is because the above approach leaks the privacy
about which constraint (spatial or keyword) leads Eq. (10)
to fail. Here, we term it as conjunctive privacy. Such a
kind of privacy leakage has been penetratingly analyzed
in [9]. To tackle it, we propose a random mask solution
by constructing an integrated vector VR,BM with the size of
2(Tx + Ty) + 1 + ρ + d, where d is the number of dummy
values, and encrypting it into CVR,BM = VR,BM ·M. Specifically,

VR,BM =(rsα(Rx), rsα(Ry),−rs, rkBM,−r1,−r2, · · · ,−rd),

where rs, rk, and ri (i ∈ [1, d]) are random real numbers
satisfying rs > rk >

∑d
i=1 ri. If we let ∗ ∈ {x, y}, we have:

α(R∗)j∈[1,2T∗] =

{
1 if j = p∗l or j = p∗u + T∗

0 Otherwise.
(12)

Given a query Q containing Rq and E(BMq), it is encoded
as a 2(Tx + Ty) + 1 + ρ + d dimensional vector VRq,BMq and
then encrypted into CVRq,BMq = VRq,BMq · (M−1)T .

VRq,BMq =(rqβ(Rq,x), rqβ(Rq,y), 4rq, rtE(BMq), r
′
1, r
′
2, · · · , r′d),

where rq, rt, and r′i (i ∈ [1, d]) are random real numbers
satisfying rq > rt · φ >

∑d
i=1 r

′
i, and φ is the number of

element 1 in E(BMq). If we let ∗ ∈ {x, y}, we have:

β(Rq,∗)j∈[1,2T∗] =

1 if j ∈ [1, pq,∗u]

or j ∈ [pq,∗l + T∗, 2T∗]

0 Otherwise.
(13)

With CVR,BM and CVRq,BMq , we can determine whether Eq. (10)
holds or not by computing CVR,BM ◦ CVRq,BMq . If CVR,BM ◦
CVRq,BMq > 0, Eq. (10) holds, and we need to access the
MBR’s children, otherwise it does not hold, and we should
ignore the MBR’s children. In this way, when we decide not
to access an MBR’s children, the information about which
constraint does not hold is preserved. Next, we show the
correctness proof of our random mask solution as follows.

Proof.

CVR,BM ◦ CVRq,BMq = CVR,BM · (CVRq,BMq)T

= (VR,BM ·M) ·
(
VRq,BMq · (M−1)T

)T
= VR,BM · (VRq,BMq)T = VR,BM ◦ VRq,BMq
= rsrq

(
α(Rx) ◦ β(Rq,x) + α(Ry) ◦ β(Rq,y)− 4

)
+ rkrt

(
BM ◦ E(BMq)

)
−

d∑
i=1

rir
′
i

(14)

From Eq. (11), Eq. (12), and Eq. (13), we know that, if R∩Rq 6=
∅, we have α(Rx) ◦ β(Rq,x) +α(Ry) ◦ β(Rq,y) = 4, otherwise(
α(Rx) ◦ β(Rq,x) + α(Ry) ◦ β(Rq,y)

)
∈ [0, 3]. Regarding the

keyword condition, if it is satisfied, we have BM◦E(BMq) >

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

10

0, otherwise it is 0. Since rsrq > rkrt · φ >
∑d
i=1 rir

′
i, iff

Eq. (10) holds, we have CVR,BM ◦ CVRq,BMq > 0.

Vector Bucketing Technique. In our random mask so-
lution, we need to construct the vectors VR,BM and VRq,BMq
with the size of 2(Tx + Ty) + 1 + ρ + d. In some cases, Tx,
Ty , or ρ may be large, leading to efficiency deterioration in
generating random matrix and encrypting these vectors. To
tackle this issue, we propose a vector bucketing technique
to split a vector into several sub-vectors, each of which has
the size of κ. Totally, there are ξ = d 2(Tx+Ty)+1+ρ+d

κ e sub-
vectors:

VR,BM = (V1R,BM, V
2
R,BM, · · · , V

ξ
R,BM),

VRq,BMq = (V1Rq,BMq , V
2
Rq,BMq , · · · , V

ξ
Rq,BMq).

(15)

Note that the last sub-vector will be padded with 0 if its
size is less than κ, and the permutation technique can be
used here to swap the positions of these sub-vectors. Then,
we add at least 2 random real numbers into each sub-
vector, i.e., ~VjR,BM = (VjR,BM, r

j
x,1, r

j
x,1, r

j
x,2, r

j
x,2) and ~V

j
Rq,BMq =

(VjRq,BMq , r
j
q,1,−r

j
q,1, r

j
q,2,−r

j
q,2), where j ∈ [1, ξ]. After that,

we generate ξ random invertible matrices {M1,M2, · · · ,Mξ}
and encrypt sub-vectors as follows:

C̃VR,BM = (~V1R,BM ·M1, ~V
2
R,BM ·M2, · · · , ~VξR,BM ·Mξ),

C̃VRq,BMq = (~V1Rq,BMq · (M
−1
1)T , ~V2Rq,BMq · (M

−1
2)T , · · · , ~VξRq,BMq · (M

−1
ξ)T).

(16)
Similarly, we can determine whether Eq. (10) holds or not by
computing C̃VR,BM ◦ C̃VRq,BMq . Since we have C̃VR,BM ◦ C̃VRq,BMq =
~VR,BM ◦ ~VRq,BMq = VR,BM ◦ VRq,BMq , the vector bucketing tech-
nique can ensure the correctness of the predicate encryption
according to Eq. (14). In this way, we can improve the
performance in generating random invertible matrices and
encrypting vectors. First, in the process of generating a
random matrix, most of time is taken in calculating its
inverse matrix. Although we need to generate ξ random
invertible matrices, generating a (κ + 4) × (κ + 4) ran-
dom invertible matrice is more efficient than generating a
(2Tx + 2Ty + 1 + ρ+ d)× (2Tx + 2Ty + 1 + ρ+ d) random
invertible matrix. Second, the vector bucketing technique
can reduce the multiplication and addition operations from
around (2Tx + 2Ty + 1 + ρ+ d)2 to ξ · (κ+ 4)2.

4.3.2 Description of Our PPSKS+ Scheme
Based on the above FR-tree, random mask solution, and vec-
tor bucketing technique, we construct our PPSKS+ scheme,
which is also comprised of five phases: 1) system initializa-
tion; 2) data outsourcing; 3) token generation; 4) search; 5)
data recovery.

System Initialization. In our PPSKS+ scheme, the sys-
tem initialization phase is similar to that of our PPSKS
scheme. The only difference is that the data owner O
needs to generate ξ random invertible matrices M =
{M1,M2, · · · ,Mξ}, each of which has the size of (κ + 4) ×
(κ+ 4), and authorizes them to the query proxy P .

Data Outsourcing. The data ownerO first builds the FR-
tree over the dataset X = {xi = {(pi,x, pi,y), Wi} | 1 ≤ i ≤
n}. Here, we denote the FR-tree as Γ. Then, O encrypts Γ
as E(Γ). Specifically, for each non-leaf node, O constructs
VR,BM and generates encrypted vector C̃VR,BM using the vector
bucketing technique. For each leaf node, O generates E(xi)

according to Eq. (5) and pads the last level’s MBR to have
m leaf nodes with the values outside the possible queries,
where m is the maximum number of children. After that, O
outsources E(Γ) to the cloud server C. Besides, O sends the
parameters {Tx, Ty, d, κ} and the sorted keyword dictionary
to the registered query users.

Token Generation. First, the query user ui constructs the
vector ~VRq,BMq = (~V1Rq,BMq ,

~V2Rq,BMq , · · · , ~V
ξ
Rq,BMq) according to the

query request Q. For each ~V
j
Rq,BMq (1 ≤ j ≤ ξ), ui chooses

two random real numbers {rj1, r
j
2} and two random vectors

{VRj1, VR
j
2} satisfying ~V

j
Rq,BMq = rj1 ·VR

j
1 +rj2 ·VR

j
2. Then, ui fur-

ther chooses random real numbers {rj1,ε, r
j
2,ε | ε = 1, 2, 3, 4}

and two random vectors {VRj3, VR
j
4}. After that, ui generates

VQj = {VQj1,1, VQ
j
1,2, VQ

j
2,1, VQ

j
2,2}, where

VQ
j
1,1 = rj1,1 · VR

j
1 + rj1,2 · VR

j
3;

VQ
j
1,2 = rj1,3 · VR

j
1 + rj1,4 · VR

j
3;

VQ
j
2,1 = rj2,1 · VR

j
2 + rj2,2 · VR

j
4;

VQ
j
2,2 = rj2,3 · VR

j
2 + rj2,4 · VR

j
4.

(17)

After generating the session key ssi = H(sski, ts), ui sends
{VQj ,SEssi(r

j
1||r

j
2||r

j
1,ε||r

j
2,ε) | j ∈ [1, ξ], ε ∈ [1, 4]} and

{BF′Rq,x ,BF
′
Rq,y

,BF′Wq ,
~t′τ , ~τ

′
1, ~τ
′
2, SER} (generated in Step-3 of

the PPSKS’s token generation phase) to the query proxy P .
Upon receiving them, P first generates Token1 with

Eq. (7). Then, P generates Token2 with the authorized
matricesM = {M1,M2, · · · ,Mξ} as follows.

Token2 ={VQj · (M−1
j)T ,SEssi(r

j
1||r

j
2||r

j
1,ε||r

j
2,ε),

idi, ts | j ∈ [1, ξ], ε ∈ [1, 4]},

where VQj ·(M−1
j)T = {VQj1,1 ·(M

−1
j)T , VQj1,2 ·(M

−1
j)T , VQj2,1 ·

(M−1
j)T , VQj2,2 · (M−1

j)T }. Next, P forwards query tokens
{Token1, Token2} to the cloud server C.

Search. After receiving the query tokens, with the master
key mk, the cloud server C first calculates the session
key ssi = H

(
H(mk, idi), ts

)
and then recovers random

sets {rx, ry, rw, rτt , rτ1 , rτ2} from SER and {rj1, r
j
2, r

j
1,ε, r

j
2,ε}

from SEssi(r
j
1||r

j
2||r

j
1,ε||r

j
2,ε). For Token1, C obtains

{E(BFRq,x),E(BFRq,y),E(BFWq),E(~τt),E(~τ1),E(~τ2)} by re-
moving random sets. For Token2, C recovers ~VjRq,BMq ·(M

−1
j)T

using VQj · (M−1
j)T and {rj1, r

j
2, r

j
1,ε, r

j
2,ε} as follows.

~V
j
Rq,BMq

· (M−1
j)T = rj1 ·

rj1,4 · VQ
j
1,1 · (M

−1
j)T − rj1,2 · VQ

j
1,2 · (M

−1
j)T

rj1,1 · r
j
1,4 − r

j
1,3 · r

j
1,2

+ rj2 ·
rj2,4 · VQ

j
2,1 · (M

−1
j)T − rj2,2 · VQ

j
2,2 · (M

−1
j)T

rj2,1 · r
j
2,4 − r

j
2,3 · r

j
2,2

from Eq. (17)
−−−−−−−→ = (rj1 · VR

j
1 + rj2 · VR

j
2) · (M−1

j)T = ~V
j
Rq,BMq

· (M−1
j)T .

Then, C can generate C̃VRq,BMq , as shown in Eq. (16). Next,
C traverses the encrypted tree E(Γ) by checking whether
C̃VR,BM ◦ C̃VRq,BMq > 0 or not. If yes, C accesses the MBR’s
children. When navigating to leaf nodes, C executes the
same steps as the search phase in the PPSKS scheme to
obtain the encrypted results: ERes. Note that, in our PPSKS
scheme, C needs to calculate ERes among the whole dataset.
While, in our PPSKS+ scheme, C only needs to calculate
ERes within the leaf nodes under an MBR. See the detailed
search process in Algorithm 2.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

11

Data Recovery. In our PPSKS+ scheme, the data recov-
ery phase is the same as that in the PPSKS scheme.

Remark. The basic idea of our PPSKS+ scheme is to build
an encrypted FR-tree and make the cloud server search
over the tree. Since R*-tree has fewer overlaps than the
original R-tree, we choose it as the building block of our
FR-tree. When traversing the encrypted FR-tree, we use the
predicate encryption that allows the cloud server to quickly
navigate to the last level’s MBR. After that, the cloud server
can calculate the encrypted results among the leaf nodes
in the MBR. As a result, our PPSKS+ scheme can achieve
better efficiency than our PPSKS scheme while hiding access
patterns among m encrypted data records.

5 SECURITY ANALYSIS

Following our design goal in privacy preservation, in this
section, we will demonstrate that i) our proposed schemes
(PPSKS and PPSKS+) can protect the privacy of outsourced
data, query requests, query results, and access patterns
against the cloud server C; ii) our proposed schemes can
preserve the privacy of query requests and query results
against the query proxy P . Since our PPSKS and PPSKS+
schemes are built on the SSMT scheme, we will first prove
the security of our SSMT scheme and then discuss the
privacy preservation of our PPSKS and PPSKS+ schemes.

First of all, we would briefly review the security model
for securely realizing an ideal functionality in the presence
of the static semi-honest adversary [33]. In our security
model, since the cloud server C and the query proxy P are
semi-honest, we will separately prove that our schemes are
secure against C and P . If we denote I as the instance of C
and P , i.e., I ∈ {C,P}, we have the following models:

Real world model: The real world execution of a scheme
Π takes place in I and an adversary A, who corrupts I .
Assuming that x is the input of the scheme Π over I , and y
is the auxiliary input, the execution of Π under A in the real
world model is defined as:

REALΠ,A,y(x)
def
= {OutputΠ(x),ViewΠ(x), y},

in which OutputΠ(x) is the output of the execution of Π
with the input x on I , and ViewΠ(x) is the view of I during
an execution of Π with the input x.

Ideal world model: In the ideal world execution, I inter-
acts with the ideal functionality F for a function f . Here,
the execution of f under simulator Sim in the ideal world
model on input x and auxiliary input y is defined as:

IDEALF,Sim,y(x)
def
= {f(x), Sim(x, f(x)), y}.

Definition 2 (Security against semi-honest adversary). LetF
be a deterministic functionality and Π be a scheme in I . We say
that Π securely realizes F if there exists Sim of PPT (Probabilistic
Polynomial Time) transformations (where Sim = Sim(A)) such
that for semi-honest PPT adversary A, for x and y, for I holds:

REALΠ,A,y(x)
c≈ IDEALF,Sim,y(x)

where
c≈ denotes computational indistinguishability.

5.1 The security of SSMT scheme
In this subsection, with Definition 2, we will prove that our
SSMT scheme achieves indistinguishability under Chosen-
Plaintext Attacks (IND-CPA).

Algorithm 2 PPSKS+ Search over Encrypted Data
Input: Encrypted FR-tree, E(Γ) and query tokens, {Token1, Token2};
Output: A set containing encrypted data records, ERes;
1: {E(BFRq,x),E(BFRq,y),E(BFWq),E(~τt),E(~τ1),E(~τ2)} ← Token1;
2: C̃VRq,BMq ← Token2;
3: Initialize an MBR set SMBR ← ∅; f(x)← SSMT.Interpolation(γ)
4: SearchOnFRtree(E(Γ).root, C̃VRq,BMq)
5: for each MBR in SMBR do
6: for each leaf node E(xi), i ∈ [1,m], under MBR do
7: E(θx)←

∑tx
j=1 SSMT.Check

(
E(BFpi,x),E(BFRq,x,j), f(x)

)
8: E(θy)←

∑ty
j=1 SSMT.Check

(
E(BFpi,y),E(BFRq,y,j), f(x)

)
9: E(z)← SSMT.Check(E(BFWi),E(BFWq,j), f(x)) and secure

circuits: SPadd, Sadd, Scom, Smul;
10: E(fi)← E(θx) · E(θy) · E(z) = E(θx · θy · z);
11: {E(vj) | j ∈ [1, k]} ← {E(fi) | i ∈ [1,m]}
12: {E(p′j,x),E(p′j,y),E(W′j)} ← Eq. (8) and random integers;
13: ERes.add({E(p′j,x),E(p′j,y),E(W′j)});

14: function SearchOnFRtree(node, C̃VRq,BMq)
15: if node is non-leaf node then
16: C̃VR,BM ← encrypted vector of node.MBR;
17: if C̃VR,BM ◦ C̃VRq,BMq > 0 then
18: if node is last level’s non-lead node then
19: SMBR.add(node.MBR);
20: else
21: for each childNode of node do
22: SearchOnFRtree(childNode, C̃VRq,BMq);

Theorem 1. The SSMT scheme is IND-CPA secure if the used
fully homomorphic encryption scheme (FHE) is IND-CPA secure.

Proof. For the work process of the simulator, Sim first ran-
domly chooses a set S′, an element x′, and γ indepen-
dent hash functions. Then, Sim simulates A as follows:
i) it generates an encrypted bloom filter E(BFs′) for the
set S′; ii) it generates an encrypted bloom filter E(BFx′)
for the element x′; iii) with γ, it builds a polynomial
function f ′(x); iv) it calculates E(σ′) = E(BFs′) ◦ E(BFx′)
and E(θ′) = E(f(σ′)). Finally, Sim outputs {E(θ′)} and
{E(BFs′),E(BFx′), f

′(x),E(σ′)} asA’s ideal view. In the real
execution, A receives {E(BFs),E(BFx), f(x)} and calculates
{E(σ),E(θ)}. Obviously, distinguishing the real and ideal
views is equivalent to breaking the FHE ciphertexts. There-
fore, our proposed SSMT scheme is IND-CPA secure if the
employed FHE is IND-CPA secure.

5.2 The privacy preservation of PPSKS and PPSKS+
schemes against the cloud server

Before analyzing the security of our PPSKS and PPSKS+
schemes against the cloud server C, we first define the
leakages of our PPSKS and PPSKS+ schemes as L1 and L2,
respectively.
• In our PPSKS scheme, since C can only obtain the

number of query result k, the leakage L1 = k.
• In our PPSKS+ scheme, when searching on the non-

leaf nodes, C knows whether the MBR’s children should be
accessed by checking C̃VR,BM ◦ C̃VRq,BMq > 0. Consequently, C
knows the inner product result between C̃VR,BM and C̃VRq,BMq ,
denoted as dot(C̃VR,BM, C̃VRq,BMq). When reaching leaf nodes,
since C executes the same operations as our PPSKS scheme
to obtain the encrypted query results, it also knows k. Thus,
L2 = {dot(C̃VR,BM, C̃VRq,BMq), k}.

Next, we show that our PPSKS and PPSKS+ schemes can
achieve the privacy goals against the cloud server C.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

12

Theorem 2. The PPSKS scheme securely computes ERes under
L1 without leaking the outsourced data, query requests, query
results, and access pattern privacy to C.

Proof. In our PPSKS scheme, C holds the encrypted out-
sourced data {E(xi) | i ∈ [1, n]} and the search token
Token1. First, C uses the SSMT scheme to calculate the
encrypted flag E(fi) indicating whether the corresponding
data record E(xi) satisfies the query requests or not. Since
the outsourced data and query requests are encrypted with
FHE, and the SSMT scheme has been proved to be IND-CPA
secure, the cloud server C has no idea about the outsourced
data, query requests, and flags fi. After obtaining E(fi), C
can get {E(vj) | j ∈ [1, k]} and calculate k encrypted results
with Eq. (8). Since all operations are conducted under FHE
ciphertexts, the security of FHE can guarantee the query
results are kept secret from C although it has L1. Besides,
since C has no idea about fi, and the k encrypted results are
calculated from n data records (see Eq. (8)), C only knows
that there are k data records satisfying the query request and
cannot infer which data records in the dataset are selected
as the query results. Therefore, our PPSKS scheme can hide
access patterns.

Theorem 3. The PPSKS+ scheme securely computes ERes under
L2 without leaking the outsourced data, query requests, query
results, and m-access pattern privacy to C.

Before proving Theorem 3, we first define m-access pat-
tern privacy.

Definition 3 (m-access pattern privacy). Given an encrypted
dataset X with n data items, after forming a subset X(m) with
m data items, where m < n, the m-access pattern privacy
ensures the adversary has no idea about which data items in X(m)

are selected as query results.

Proof. In our PPSKS+ scheme, C holds the encrypted FR-tree
E(Γ) and query tokens {Token1, Token2}. First, as shown
in Algorithm 2, C uses Token2 to traverse the FR-tree on
non-leaf nodes, in which the predicate encryption technique
motivated by [18] is adopted. In [18], such a predicate en-
cryption technique had been proved to be selectively secure
under the leakage of inner product result dot(). Therefore, C
cannot infer the underlying plaintexts of MBRs and Token2.
Then, with Token1, C uses the same approach as our PPSKS
scheme to calculate the encrypted query results on m leaf
nodes. Therefore, C has no idea regarding the plaintexts of
encrypted leaf nodes {E(xi) | i ∈ [1, n]}, Token1, and query
results. Besides, in our PPSKS+ scheme, we ensure that there
are m leaf nodes in the last level MBR by padding dummy
data records. Therefore, C cannot infer which data records
are returned as the query requests in the m leaf nodes. Thus,
our PPSKS+ scheme hides m-access pattern privacy.

5.3 The privacy preservation of PPSKS and PPSKS+
schemes against the query proxy

Now, with Definition 2, we prove that the query requests
and query results of our PPSKS and PPSKS+ schemes are
kept secret from the query proxy P .

Theorem 4. The PPSKS and PPSKS+ schemes are secure against
the query proxyP if the employed symmetric key encryption SE(),
e.g., AES-256, is secure.

Proof. Compared to our PPSKS scheme, our PPSKS+
scheme has an extra query token Token2. Therefore, if
we prove our PPSKS+ scheme to be secure against P ,
we can also ensure the security of our PPSKS scheme.
Next, we show how to construct the simulator of our
PPSKS+ scheme on P . First, Sim randomly chooses
an SKS query Q′′ = {R′′q , W′′q , τ ′′1 , τ ′′2 }, random sets
{r′′x, r′′y , r′′w , r′′τt , r

′′
τ1 , r

′′
τ2}, and random real numbers

{r′j1 , r
′j
2 , r

′j
1,ε, r

′j
2,ε | j ∈ [1, ξ], ε ∈ [1, 4]}. Then, Sim simulates

A as follows: i) it generates {BF′′Rq,x ,BF
′′
Rq,y

,BF′′Wq , ~τ
′′
t , ~τ

′′
1 , ~τ

′′
2 }

by adding {r′′x, r′′y , r′′w , r′′τt , r
′′
τ1 , r

′′
τ2} into encoded Q′′; ii) it

first constructs ~V′Rq,BMq according to Q′′ and then generates
{VQ′j | j ∈ [1, ξ]} following Eq. (17). Finally, Sim outputs
{BF′′Rq,x ,BF

′′
Rq,y

,BF′′Wq , ~τ
′′
t , ~τ

′′
1 , ~τ

′′
2 , VQ

′1, VQ′2, · · · , VQ′ξ}
as A’s ideal view. In the real execution, A receives
{BF′Rq,x ,BF

′
Rq,y

,BF′Wq , ~τ
′
t , ~τ
′
1, ~τ
′
2, VQ

1, VQ2, · · · , VQξ}. In A’s
real view, all elements are added with random values:
{rx, ry, rw, rτt , rτ1 , rτ2} and {rj1, r

j
2, r

j
1,ε, r

j
2,ε}. Clearly,

distinguishing the real and ideal views is equivalent to
obtaining these random values. However, these values are
encrypted by SE() with the session key ssi. Since P does
not have ssi, the security of SE() ensures that the query
request of our PPSKS+ scheme is secure. Similarly, due to
the random sets {rj | j ∈ [1, k]}, which are encrypted with
SE(), the query results are also secure against P .

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our PPSKS
and PPSKS+ schemes, focusing on data outsourcing, token
generation, and search phases.

Notably, we do not compare our proposed schemes
with the existing privacy-preserving spatial keyword query
schemes in terms of performance. That is because this work
is the first to consider the similarity of keyword sets while
protecting access pattern privacy in privacy-preserving spa-
tial keyword queries. Since the stricter security goal or
more challenging functionality (both of which we have)
unavoidably incur additional costs, it is unreasonable and
unfair to compare the performance of schemes that have
different security goals or functionalities. Nonetheless, to
explore the differences between our proposed schemes and
the existing schemes, we provide a detailed characteristic
comparison in Table 3.

Experimental Setting: In our experiments, we use a real-
world Yelp business dataset [34], denoted as Yelp. For each
item in the dataset, we extract the location information
of Florida as spatial data and the categories attribute as
keyword sets. Table 2 lists the description of the Yelp
dataset. Further, we scale the location information and have
Tx = 111, 135, Ty = 95, 102. Therefore, wpi,x = wpi,y = 17.

Recalling Section 3, we employ the bloom filter and FHE
in our proposed schemes. For bloom filters, we will use the
optimal version, i.e., following the equation η = γ · µ/ ln 2
to set the bloom filter’s length, in which the false positive
probability is fp ≈ (1/2)γ . For the spatial bloom filters,
µ = 2wpi,x − 2 = 2wpi,x − 2 = 32, while µ = 27 for

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

13

4 8 12 16 20

200

400

600

Ou
ts

ou
rc

in
g

tim
e

(s
)

PPSKS
PPSKS+

10
20

(a) Varying with the number of data
records n (×103)

8 12 16 20

250

500

Ou
ts

ou
rc

in
g

tim
e

(s
)

PPSKS
PPSKS+

5
10
15

(b) Varying with the number of hash
functions γ

4 8 12 16 20

500

1000

1500

2000

Ou
ts

ou
rc

in
g

tim
e

(s
)

PPSKS+ m=4
PPSKS+ m=6
PPSKS+ m=8
PPSKS+ m=10

(c) Impact of maximum children varying
with n (×103)

Fig. 7. Data outsourcing time: (a) varying with n, and setting γ=10; (b) varying with γ, and setting n=104; (c) varying with n, exploring the impact of
maximum children of FR-tree, and setting γ=10.

8 12 16 20

60
120
180
240
300
360

To
ke

n
ge

ne
ra

tio
n

tim
e

(m
s)

PPSKS
PPSKS+

4

6

(a) Varying with the number of
hash functions γ

3 4 5 6 7 8

60
120
180
240
300
360

To
ke

n
ge

ne
ra

tio
n

tim
e

(m
s)

PPSKS
PPSKS+

5

7

(b) Varying with the number of
query keywords |Wq |

Fig. 8. Token generation time: (a) varying with γ, and setting |Wq |=4; (b)
varying with |Wq |, and setting γ=10.

TABLE 2
Description of the Yelp dataset

Name Dataset size Maximum size
of keyword sets

Keyword dictio-
nary size

Yelp 21,900 27 1123

the keyword bloom filter. Regarding FHE, we adopt the
symmetric homomorphic encryption (SHE) used in [35], [36]
due to its high efficiency. For SHE’s security parameters,
we set k0 = 4096, k1 = 80, and k2 = 160. See detailed
definitions in [35]. Note that: i) the SHE scheme also has
its public-key setting [36]; ii) although SHE is a leveled ho-
momorphic encryption scheme, we can refresh ciphertexts
by using the bootstrapping protocol proposed in [35]. All
of our proposed schemes were implemented with Java and
executed on a machine with 16 GB memory, 3.4 GHz Intel(R)
Core(TM) i7-3770 processors, and Ubuntu 16.04 OS.

6.1 Evaluation of Data Outsourcing Phase
From Section 4, we know that the performance of our PPSKS
and PPSKS+ schemes is affected by the number of data
records n and the number of hash functions γ. Besides, the
maximum number of FR-tree children has an impact on the
performance of our PPSKS+ scheme due to employing the
tree structure. Fig. 7 depicts the performance of our PPSKS
and PPSKS+ schemes in the data outsourcing phase varying
with the above parameters. From Fig. 7(a) and Fig. 7(b), we
can see that the PPSKS scheme consumes less time than
our PPSKS+ scheme in preparing outsourcing data. This
is because, compared to the PPSKS scheme, the PPSKS+
scheme needs to additionally build FR-tree and encrypt the
constructed FR-tree. It is reasonable since data outsourcing
is offline and usually takes once. The tree-based scheme,
PPSKS+, benefits the performance of search operations that
are frequent and are the focus of the optimization. See
detailed search evaluations in Section 6.3. Furthermore,

Fig. 7(a) and Fig. 7(b) illustrate that the outsourcing time
of the PPSKS+ scheme increases sharply with growing n,
while it almost remains stable with the growth of γ. The
reason is that the time cost of encrypting FR-tree’s non-leaf
nodes dominates that of leaf nodes. In Fig. 7(c), we evaluate
the outsourcing performance of our PPSKS+ scheme under
different maximum children settings. We can see that: i) the
time costs increase with the growth of n for each maximum
children setting. Obviously, it is due to the increase in the
number of non-leaf nodes; ii) more children under an MRB
leads to better outsourcing performance. This is because
there are fewer non-leaf nodes if n is fixed.

6.2 Evaluation of Token Generation Phase

In the token generation phase, the PPSKS scheme generates
one token Token1, while the PPSKS+ generates two tokens:
Token1 and Token2. For Token1, it is affected by the number
of hash functions γ and the number of keywords |Wq|. Re-
garding Token2, it is affected by the number of sub-vectors
ξ introduced by our vector bucketing technique. Since we
will discuss the performance varying with ξ in Section 6.4,
here we only evaluate the token generation performance
varying with γ and |Wq|, as shown in Fig. 8(a) and Fig. 8(b).
From these two figures, we have: i) our PPSKS scheme has
better performance in generating tokens. It is obvious since
the PPSKS+ scheme needs to generate an additional token
Token2; ii) the token generation time of our PPSKS scheme
increases with the growth of γ and |Wq|, while the PPSKS+
scheme presents a stable trend. This is because generating
random vectors VQj (j ∈ [1, ξ]) and encrypting them into
Token2 take more time than generating Token1. However,
γ and |Wq| only have an impact on generating Token1; iii)
although our PPSKS+ scheme is not as good as the PPSKS
scheme in the performance of token generation, it is still
less than 200ms for all experimental cases, validating its
efficiency in this phase.

6.3 Evaluation of Search Phase

In the search phase, we explore the impact of the number
of data records n, the number of hash functions γ, and
the number of query keywords |Wq| on search efficiency, as
shown in Fig. 9(a), Fig. 9(b), and Fig. 9(c), respectively. From
these three figures, we can see that: i) our PPSKS+ scheme
achieves at least two orders of magnitude better perfor-
mance than the PPSKS scheme; ii) our PPSKS+ is at the level
of second and fewer than 10 seconds in all experimental
cases, which is already quite efficient in performing spatial

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

14

4 8 12 16 20100

101

102

103

104

Se
ar

ch
 ti

m
e

(s
)

PPSKS
PPSKS+

(a) Varying with the number of
data records n (×103).

8 12 16 20100

101

102

103

104

Se
ar

ch
 ti

m
e

(s
)

PPSKS
PPSKS+

(b) Varying with the number of
hash functions γ

3 4 5 6 7 8100

101

102

103

104

Se
ar

ch
 ti

m
e

(s
)

PPSKS
PPSKS+

(c) Varying with the number of
query keywords |Wq |

4 8 12 16 20

2
4
6
8

10

Se
ar

ch
 ti

m
e

(s
) PPSKS+ m=4

PPSKS+ m=6
PPSKS+ m=8
PPSKS+ m=10

(d) Impact of maximum chil-
dren varying with n (×103).

Fig. 9. Search time: (a) varying with n, and setting γ=10, |Wq |=4; (b) varying with γ, and setting n=104, |Wq |=4; (c) varying with |Wq |, and setting
n=104, γ=10; (d) varying with n, exploring the impact of maximum children of FR-tree, and setting γ=10, |Wq |=4.

TABLE 3
Comparison with existing schemes

Schemes ELCBFR+ [6] PBRQ-L [7] PBRQ-Q [7] PrivSTL [8] SKSE-I [9] SKSE-II [9] GRQ+MSSAC [10] PPSKS PPSKS+

Sub-linear complexity 4 8 4 4 8 4 4 8 4

Keyword search Boolean Boolean Boolean Boolean Boolean Boolean Euclidean Jaccard Jaccard

Single-server model 4 4 4 8 4 4 4 4 4

Conjunctive privacy 4 4 8 4 4 4 8 4 4

Access pattern 8 8 8 8 8 8 8 4

- Note that, indicates the PPSKS+ scheme hides m-access pattern privacy instead of the full access pattern privacy in PPSKS.

10 102 103 104
0

250
500
750

1000

Ex
ec

ut
io

n
tim

e
(s

) MatrixGen
InverseGen
TokenGen

(a) Impact on key and token
generations varying with ξ

102 103 104
102

105

107

Ex
ec

ut
io

n
tim

e
(s

) Outsource n=10000
Outsource n=20000

(b) Impact on data outsourcing
varying with ξ

Fig. 10. Execution time of matrix generation, token generation, and data
outsourcing varying with ξ: (a) impact on key and token generations; (b)
impact on data outsourcing.

keyword queries over encrypted data, especially under the
goals of calculating Jaccard similarity and protecting access
patterns. The significant advantage of our PPSKS+ scheme
stems from searching over encrypted FR-tree, allowing it to
attain sublinear efficiency. In contrast, our PPSKS scheme is
linear efficiency to the dataset size.

In Fig. 9(d), we explore the impact of the number of FR-
tree’s maximum children on search efficiency, in which we
vary n and observe the search performance under different
maximum children settings. We can see that the dataset size
n has a minor impact on the search efficiency, whereas it
is a bit significant for the number of maximum children.
That is because it is quite efficient for our PPSKS+ scheme
to make search decisions by computing inner products at
non-leaf nodes, but it is relatively expensive in calculating
search results at leaf nodes. Therefore, fewer children under
an MBR can lead to better search performance.

As we employ the bloom filter technique in our schemes,
accuracy is another important measurement. In fact, it is
going to be a trade-off between accuracy and efficiency,
i.e., the larger γ will improve accuracy since fp ≈ (1/2)γ ,
but it will increase the computational costs, as shown in
Fig. 7(b), Fig. 8(a), and Fig. 9(b). In our experiments, we set
the maximum value of γ as 20, i.e., fp ≈ 0.0001%, which is
acceptable for many real-world applications. Since the num-
ber of hash functions γ has an insignificant effect on com-

putational costs in data outsourcing and token generation
phases, we can further improve accuracy by enlarging γ.
Regarding the search phase, when γ = 20 (fp ≈ 0.0001%),
the performance of our PPSKS+ scheme is still at the level
of second and fewer than 10 seconds.

6.4 Performance Gain of Vector Bucketing Technique
As the theoretical analysis in Section 4.3.1, the vector bucket-
ing technique can improve the performance in two aspects:
i) generating matrix and its inversion; ii) encrypting the non-
leaf node of FR-tree and the query token (Token2). In this
section, we evaluate the performance improvement of the
vector bucketing technique in key (matrix and its inversion)
generation, token generation, and data outsourcing. Since
the token generation only involves one encryption operation
for each query, we plot the performance of key generation
and token generation in one figure, as shown in Fig. 10(a).
In the figure, we vary ξ from 10 to 104 to observe the perfor-
mance of matrix generation MatrixGen, inverse matrix cal-
culation InverseGen, and token generation TokenGen. We
can see that the vector bucketing technique sharply reduces
the execution time for all of these operations, especially for
the expensive operation of InverseGen. We have analyzed
the reasons in the description of the vector bucketing tech-
nique, seeing details in Section 4.3.1. Regarding the data
outsourcing, Fig. 10(b) depicts the execution time varying
with ξ, in which we select n = 10, 000 and n = 20, 000 as the
number of outsourced data records, and vary ξ from 102 to
104. We exclude the case of ξ = 10 because it takes dozens of
hours to outsource the corresponding datasets. Obviously,
the vector bucketing technique significantly improves the
computational costs in preparing the outsourced data and
makes our proposed scheme available and efficient.

7 RELATED WORK

Due to the wide applications in LBS, several privacy-
preserving spatial keyword query schemes have been de-
signed to preserve the privacy of outsourced data and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

15

query requests. In 2019, Cui et al. [6] proposed a privacy-
preserving boolean spatial keyword query scheme EL-
CBFR+ based on the matrix encryption and linear trans-
formation method. It can retrieve the objects satisfying: i)
their locations fall inside a query rectangle; ii) their keyword
sets contain all query keywords. Aiming at the same query
type, Wang et al. [7] adopted symmetric-key hidden vector
encryption, gray code, and bitmap encoding technique to
protect the data and query privacy. The designed schemes
are denoted as PBRQ-L and PBRQ-Q. Recently, Wang et
al. [9] further presented two privacy-preserving schemes,
SKSE-I and SKSE-II, for boolean spatial keyword queries,
in which hidden vector encryption was employed as the
cryptographic primitive, and bloom filter technique was
used to construct their schemes. By integrating bilinear
map, RSA encryption, and linear encryption, Huang et
al. [8] proposed a privacy-preserving scheme PrivSTL for
the spatio-temporal keyword query that supports an addi-
tional temporal condition for the boolean spatial keyword
query. Different from the above schemes that only consider
the boolean keyword search, our proposed schemes are
able to support the keyword set similarity over encrypted
data, which is more challenging but more practical than the
boolean keyword search.

Considering keyword set similarity, Song et al. [10]
proposed a privacy-preserving spatial keyword similarity
query scheme, denoted as GRQ+MSSAC, using matrix
encryption. However, this scheme adopted the Euclidean
distance to measure the keywords similarity, which is not
as popular as the Jaccard metric (used in our proposed
schemes) for measuring the similarity of keyword sets [16].
In addition, this scheme did not consider the conjunctive
privacy discussed in [9], namely, it leaks the information
about the spatial condition or the keyword condition mis-
matches the query request.

In addition, none of the aforementioned privacy-
preserving schemes protect access pattern privacy, and our
proposed schemes are the first to consider such privacy
while providing spatial keyword similarity queries at the
same time. In order to clearly show the differences between
our proposed schemes and the existing schemes in this
topic, we compare their characteristics in Table 3.

8 CONCLUSION

In this paper, we have proposed privacy-preserving spatial
keyword similarity query schemes, in which PPSKS is a
linear search scheme, and PPSKS+ can achieve the sub-
linear search efficiency. In this domain, we are the first
to consider Jaccard similarity for keywords sets and si-
multaneously protect access patterns. Specifically, we first
designed an SSMT scheme using the bloom filter technique,
FHE, and Lagrange interpolation function. Based on the
SSMT scheme and secure circuits, we constructed our basic
scheme, PPSKS. Then, we devised the FR-tree index and
proposed a modified predicate encryption technique that
allows us to search over encrypted FR-tree without leaking
conjunctive privacy. With these components, we presented
our tree-based construction, PPSKS+, which is efficient in
performing the spatial keyword similarity queries. Finally,
we formally analyzed the security of our proposed schemes

and conducted extensive experiments to explore their per-
formance. For future work, we will further improve the
performance of our PPSKS+ scheme.

ACKNOWLEDGEMENTS

This research was supported in part by NSERC Discovery
Grants (04009, 03787, RGPIN-2022-03244).

REFERENCES

[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: An experimental evaluation,” Proceedings of the VLDB
Endowment, vol. 6, no. 3, pp. 217–228, 2013.

[2] T. Lee, J.-w. Park, S. Lee, S.-w. Hwang, S. Elnikety, and Y. He, “Pro-
cessing and optimizing main memory spatial-keyword queries,”
Proceedings of the VLDB Endowment, vol. 9, no. 3, pp. 132–143, 2015.

[3] G. Cong and C. S. Jensen, “Querying geo-textual data: Spatial key-
word queries and beyond,” in Proceedings of the 2016 International
Conference on Management of Data, 2016, pp. 2207–2212.

[4] A. Mahmood and W. G. Aref, “Query processing techniques for
big spatial-keyword data,” in Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, 2017, pp. 1777–1782.

[5] P. Tampakis, D. Spyrellis, C. Doulkeridis, N. Pelekis, C. Kalyvas,
and A. Vlachou, “A novel indexing method for spatial-keyword
range queries,” in 17th International Symposium on Spatial and
Temporal Databases, 2021, pp. 54–63.

[6] N. Cui, J. Li, X. Yang, B. Wang, M. Reynolds, and Y. Xiang,
“When geo-text meets security: privacy-preserving boolean spatial
keyword queries,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 2019, pp. 1046–1057.

[7] X. Wang, J. Ma, X. Liu, R. H. Deng, Y. Miao, D. Zhu, and Z. Ma,
“Search me in the dark: Privacy-preserving boolean range query
over encrypted spatial data,” in IEEE INFOCOM 2020-IEEE Con-
ference on Computer Communications. IEEE, 2020, pp. 2253–2262.

[8] Q. Huang, J. Du, G. Yan, Y. Yang, and Q. Wei, “Privacy-preserving
spatio-temporal keyword search for outsourced location-based
services,” IEEE Transactions on Services Computing, 2021.

[9] X. Wang, J. Ma, F. Li, X. Liu, Y. Miao, and R. H. Deng, “Enabling
efficient spatial keyword queries on encrypted data with strong
security guarantees,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 4909–4923, 2021.

[10] F. Song, Z. Qin, L. Xue, J. Zhang, X. Lin, and X. Shen, “Privacy-
preserving keyword similarity search over encrypted spatial data
in cloud computing,” IEEE Internet of Things Journal, 2021.

[11] S. Kabir, C. Wagner, T. C. Havens, and D. T. Anderson, “A sim-
ilarity measure based on bidirectional subsethood for intervals,”
IEEE Transactions on Fuzzy Systems, vol. 28, no. 11, pp. 2890–2904,
2020.

[12] Z. Zhang, K. Wang, W. Lin, A. W.-C. Fu, and R. C.-W. Wong,
“Practical access pattern privacy by combining pir and oblivious
shuffle,” in Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 2019, pp. 1331–1340.

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: ramification, attack and mit-
igation.” in Ndss, vol. 20. Citeseer, 2012, p. 12.

[14] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill, “Generic attacks
on secure outsourced databases,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1329–1340.

[15] J. Peng, H. Wang, J. Li, and H. Gao, “Set-based similarity search
for time series,” in Proceedings of the 2016 International Conference
on Management of Data, 2016, pp. 2039–2052.

[16] D. Amagata, S. Tsuruoka, Y. Arai, and T. Hara, “Feat-sksj: fast
and exact algorithm for top-k spatial-keyword similarity join,”
in Proceedings of the 29th International Conference on Advances in
Geographic Information Systems, 2021, pp. 15–24.

[17] B. Wang, M. Li, and L. Xiong, “Fastgeo: Efficient geometric range
queries on encrypted spatial data,” IEEE transactions on dependable
and secure computing, vol. 16, no. 2, pp. 245–258, 2017.

[18] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao, “Towards
efficient and privacy-preserving user-defined skyline query over
single cloud,” IEEE Transactions on Dependable and Secure Comput-
ing, 2022.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

16

[19] X. Zhu, E. Ayday, and R. Vitenberg, “A privacy-preserving frame-
work for outsourcing location-based services to the cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 1, pp.
384–399, 2019.

[20] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms
in the semi-honest model,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer,
2005, pp. 236–252.

[21] S. Geravand and M. Ahmadi, “Bloom filter applications in net-
work security: A state-of-the-art survey,” Computer Networks,
vol. 57, no. 18, pp. 4047–4064, 2013.

[22] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomor-
phic evaluation of deep discretized neural networks,” in Annual
International Cryptology Conference. Springer, 2018, pp. 483–512.

[23] M. Kim, H. T. Lee, S. Ling, B. H. M. Tan, and H. Wang, “Pri-
vate compound wildcard queries using fully homomorphic en-
cryption,” IEEE Transactions on Dependable and Secure Computing,
vol. 16, no. 5, pp. 743–756, 2017.

[24] X. Liu, R. H. Deng, K.-K. R. Choo, Y. Yang, and H. Pang, “Privacy-
preserving outsourced calculation toolkit in the cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 17, no. 5, pp.
898–911, 2018.

[25] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” ACM Transac-
tions on Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[27] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao, “Ppaq:
Privacy-preserving aggregate queries for optimal location selec-
tion in road networks,” IEEE Internet of Things Journal, 2022.

[28] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savaş, “Depth optimized
efficient homomorphic sorting,” in International Conference on Cryp-
tology and Information Security in Latin America. Springer, 2015, pp.
61–80.

[29] R. Li, A. X. Liu, H. Xu, Y. Liu, and H. Yuan, “Adaptive secure
nearest neighbor query processing over encrypted data,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[30] P. Gupta and N. McKeown, “Algorithms for packet classification,”
IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[31] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
r*-tree: An efficient and robust access method for points and
rectangles,” in Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, 1990, pp. 322–331.

[32] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in 22nd International Conference
on Data Engineering (ICDE’06). IEEE, 2006, pp. 5–5.

[33] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[34] “Yelp dataset,” https://www.kaggle.com/yelp-dataset/yelp-
dataset, 2020.

[35] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and
privacy-preserving similarity range query over encrypted time
series data,” IEEE Transactions on Dependable and Secure Computing,
2021.

[36] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “To-
ward privacy-preserving cybertwin-based spatiotemporal key-
word query for its in 6g era,” IEEE Internet of Things Journal, vol. 8,
no. 22, pp. 16 243–16 255, 2021.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interest in-
cludes cloud computing security, big data query
and query privacy.

Suprio Ray (Member, IEEE) is an Associate
Professor with the Faculty of Computer Sci-
ence, University of New Brunswick, Fredericton,
Canada. He received a Ph.D. degree from the
Department of Computer Science, University of
Toronto, Canada, in 2015. His research inter-
ests include big data and database management
systems, run-time systems for scalable data sci-
ence, provenance and privacy issues in big data
and query processing on modern hardware. E-
mail: sray@unb.ca

Rongxing Lu (Fellow, IEEE) is a Mastercard
IoT Research Chair, a University Research
Scholar, an associate professor at the Faculty
of Computer Science (FCS), University of New
Brunswick (UNB), Canada. He is a Fellow of
IEEE. His research interests include applied
cryptography, privacy enhancing technologies,
and IoT-Big Data security and privacy. He has
published extensively in his areas of expertise,
and was the recipient of 9 best (student) paper
awards from some reputable journals and con-

ferences. Currently, Dr. Lu serves as the Chair of IEEE ComSoc CIS-
TC (Communications and Information Security Technical Committee),
and the founding Co-chair of IEEE TEMS Blockchain and Distributed
Ledgers Technologies Technical Committee (BDLT-TC).

Yunguo Guan is a PhD student of the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interests in-
clude applied cryptography and game theory.

Yandong Zheng received the M.S. degree from
the Department of Computer Science, Beihang
University, China, in 2017, and received the
Ph.D. degree from the Department of Computer
Science, University of New Brunswick, Canada,
in 2022. Since 2022, she has been an Associate
Professor with the School of Cyber Engineering,
Xidian University. Her research interest includes
cloud computing security, big data privacy, and
applied privacy.

Jun Shao (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2008. He was
a Post-Doctoral Fellow with the School of In-
formation Sciences and Technology, Pennsyl-
vania State University, Pennsylvania, PA, USA,
from 2008 to 2010. He is currently a Profes-
sor with the School of Computer and Informa-
tion Engineering, Zhejiang Gongshang Univer-
sity, Hangzhou, China. His current research in-

terests include network security and applied cryptography.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227141

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:49:04 UTC from IEEE Xplore. Restrictions apply.

